Package: PH1XBAR (via r-universe)

August 20, 2024

Type Package

Title Phase I Shewhart X-Bar Chart

Version 0.11.2

Maintainer Yuhui Yao <yyao17@ua.edu>

Description The purpose of 'PH1XBAR' is to build a Phase I Shewhart control chart for the basic Shewhart, the variance components and the ARMA models in R for subgrouped and individual data. More de-

tails can be found: Yao and Chakraborti (2020) <doi:10.1002/qre.2793>, Yao and Chakraborti (2021) <doi:10.1080/0898211

License GPL-3

Encoding UTF-8

LazyData true

Depends R (>= 3.5.0)

Imports forecast, mvtnorm, pracma

URL https://github.com/bolus123/PH1XBAR

RoxygenNote 7.2.3

Repository https://bolus123.r-universe.dev

RemoteUrl https://github.com/bolus123/ph1xbar

RemoteRef HEAD

RemoteSha b3f8ceae557f1bdd521280b573373fa22a0bcd68

Contents

PH1XBAR-package																															2
bore_diameter_data							 																								3
getCC.ARMA			•		•	•		•			•			•	•			•			•			•			•			•	4
getCC.XBAR			•			•		•			•				•	 •					•						•				5
grinder_data	•		•		•	•		•			•				•	 •					•			•			•			•	6
PH1ARMA	•		•		•	•		•			•				•	 •					•			•			•			•	7
PH1XBAR		•	•	•	•	•		•	•	•	•	•	•	•	•	 •		•	•	•	•	•	•	•	•	•	•	•	•	•	9
preston_data			•		•	•		•		•	•			•	•	 •		•		•	•			•			•	•		•	11
snowfall_data																															11

Index

PH1XBAR-package

Description

The purpose of 'PH1XBAR' is to build a Phase I Shewhart control chart for the basic Shewhart, the variance components and the ARMA models in R for subgrouped and individual data. More details can be found: Yao and Chakraborti (2020) doi: 10.1002/qre.2793, Yao and Chakraborti (2021) doi: 10.1080/08982112.2021.1878220, and Yao et al. (2023) doi: 10.1080/00224065.2022.2139783.

The utility of this package is in building a Shewhart-type control chart based on new methods for subgrouped and individual data. The Phase I chart is based on the multivariate normal/t or ARMA process.

Author(s)

Maintainer: Yuhui Yao <yyao17@ua.edu>

Other contributors:

- Subha Chakraborti <schakrab@cba.ua.edu> [contributor]
- Tyler Thomas <t jthomas7@crimson.ua.edu> [contributor]
- Jason Parton < jmparton@cba.ua.edu> [contributor]
- Xin Yang <xyang15@cba.ua.edu> [contributor]

References

Champ, C.W., and Jones, L.A. (2004) Designing Phase I X-bar charts with small sample sizes. Quality and Reliability Engineering International. 20(5), 497-510

Yao, Y., Hilton, C.W., and Chakraborti, S. (2017) Designing Phase I Shewhart X-bar charts: Extended tables and software. Quality and Reliability Engineering International. 33(8), 2667-2672.

Yao, Y., and Chakraborti, S. (2021). Phase I monitoring of individual normal data: Design and implementation. Quality Engineering, 33(3), 443-456.

Yao, Y., and Chakraborti, S. (2021). Phase I process monitoring: The case of the balanced one-way random effects model. Quality and Reliability Engineering International, 37(3), 1244-1265.

Yao, Y., Chakraborti, S., Yang, X., Parton, J., Lewis Jr, D., and Hudnall, M. (2023). Phase I control chart for individual autocorrelated data: application to prescription opioid monitoring. Journal of Quality Technology, 55(3), 302-317.

See Also

Useful links:

• https://github.com/bolus123/PH1XBAR

bore_diameter_data

Examples

```
#Build a Phase I basic Shewhart control chart
data(grinder_data)
PH1XBAR(grinder_data, nsim=10)
# Build a Phase I individual control chart with an ARMA model
data(preston_data)
PH1ARMA(preston_data, nsim.process=10, nsim.coefs=10)
```

bore_diameter_data Bore diameter in manufacturing automotive driver gears

Description

A dataset cotaining bore diameter measurements in mm

Usage

bore_diameter_data

Format

A data frame with 20 rows and 5 variables:

- X1 Diameter measurement at Position 1
- X2 Diameter measurement at Position 2
- X3 Diameter measurement at Position 3
- X4 Diameter measurement at Position 4
- X5 Diameter measurement at Position 5

References

Wooluru, Yerriswamy, D. R. Swamy, and P. Nagesh. "THE PROCESS CAPABILITY ANALYSIS-A TOOL FOR PROCESS PERFORMANCE MEASURES AND METRICS-A CASE STUDY." International Journal for Quality Research 8.3 (2014). getCC.ARMA

Description

get Phase I corrected charting constant with an ARMA model

Usage

```
getCC.ARMA(
    fap0 = 0.05,
    interval = c(1, 4),
    n = 50,
    order = c(1, 0, 0),
    phi.vec = 0.5,
    theta.vec = NULL,
    case = "U",
    method = "MLE+MOM",
    nsim.coefs = 100,
    nsim.process = 1000,
    burn.in = 50,
    sim.type = "Matrix",
    verbose = FALSE
)
```

Arguments

fap0	nominal false Alarm Probabilty in Phase 1
interval	searching range of charting constants for the exact method
n	number of observations
order	order for ARMA model
phi.vec	given vectors of autoregressive parameters for ARMA models
theta.vec	given vectors of moving-average parameters for ARMA models
case	known or unknown case. When case = 'U', the parameters are unknown and the charting constant is calculated based on a bootstrapping method. When case = 'K', the parameters are known and the charting constant is found using the quantile function of multivariate normal distribution
method	estimation method for the control chart. When method = 'Method 3' is maximum likehood estimations plus method of moments. Other options are 'Method 1' which is pure MLE and 'Method 2' which is pure CSS.
nsim.coefs	number of simulation for coeficients. It is functional when double.sim = TRUE.
nsim.process	number of simulation for ARMA processes
burn.in	number of burn-ins. When burn.in = 0, the ECM gets involved. When burn.in is large enough, the ACM gets involved.

sim.type	type of simulation. When sim.type = 'Matrix', the simulation is generated using matrix computation. When sim.type = 'Recursive', the simulation is based on a recursion.
verbose	print diagnostic information about fap0 and the charting constant during the simulations for the exact method
phi	vector of autoregressive coefficient(s). When case = 'K', it must be provided. The length must be the same as the first value in the order. It needs to be NULL if no autoregressor presents
theta	vector of moving-average coefficient(s). When case = 'K', it must be provided. The length must be the same as the third value in the order. It needs to be NULL if no moving average presents

Value

Object type double. The corrected charting constant.

Examples

```
# load the data in the package as an example
set.seed(12345)
```

Calculate the charting constant using fap0 of 0.05, and 50 observations getCC.ARMA(fap0=0.05, n=50, nsim.coefs=10, nsim.process=10)

getCC.XBAR

Random Flexible Level Shift Model

Description

get Phase I corrected charting constant

Usage

```
getCC.XBAR(
    m,
    fap0 = 0.05,
    var.est = c("S", "MR"),
    ub.cons = 1,
    method = c("exact", "BA"),
    interval = c(1, 5),
    nsim = 10000,
    nu = m - 1,
    lambda = 1,
    verbose = FALSE
)
```

Arguments

m	nominal false Alarm Probabilty in Phase 1
fap0	number of subgroups
var.est	'S' - use mean-square-based estimator, 'MR' - use moving-range-based estimator
ub.cons	unbiasing constant
method	'exact' - calculate results using the exact method, 'BA' - calculate results using the Bonfferoni approximation
interval	searching range of charting constants for the exact method
nsim	number of simulation for the exact method
nu	degrees of freedom for the Bonfferoni approximation
lambda	constant for the Bonfferoni approximation
verbose	print diagnostic information about fap0 and the charting constant during the simulations for the exact method

Value

Object type double. The corrected charting constant.

Examples

set.seed(12345)

Calculate the charting constant using 10 simulations and mean-square-based estimator getCC.XBAR(fap0=0.05, m=20, nsim=10, var.est='S', verbose = TRUE)

Calculate the charting constant using 10 simulations and moving-range-based estimator getCC.XBAR(fap0=0.05, m=20, nsim=10, var.est='MR', verbose = TRUE)

grinder_data Th

Thickness measurement of silicon wafer

Description

A dataset containing the thickness measurements in nm at different positions on the silicon wafer

Usage

grinder_data

PH1ARMA

Format

A data frame with 30 rows and 5 variables:

pos1 Thickness measurement at Position 1 (outer circle)

- **pos2** Thickness measurement at Position 2 (outer circle)
- pos3 Thickness measurement at Position 3 (middle circle)
- pos4 Thickness measurement at Position 4 (middle circle)
- **pos5** Thickness measurement at Position 5 (inner circle)

References

Roes, Kit CB, and Ronald JMM Does. "Shewhart-type charts in nonstandard situations." Technometrics 37.1 (1995): 15-24

PH1ARMA

Phase I individual control chart with an ARMA model

Description

Build a Phase I individual control chart for the ARMA models. The charting constant is corrected by this approach.

Usage

```
PH1ARMA(
  Χ,
  cc = NULL,
  fap0 = 0.05,
  order = c(1, 0, 0),
  plot.option = TRUE,
  interval = c(1, 4),
  case = "U",
  phi.vec = NULL,
  theta.vec = NULL,
  mu0 = NULL,
  sigma0 = NULL,
  method = "MLE+MOM",
  nsim.coefs = 100,
  nsim.process = 1000,
  burn.in = 50,
  sim.type = "Matrix",
  standardize = TRUE,
  verbose = FALSE
)
```

Arguments

Х	input and it must be a vector
сс	nominal Phase I charting constant. If this is given, the function will not re- compute the charting constant.
fap0	nominal false Alarm Probabilty in Phase I
order	order for ARMA model
plot.option	- draw a plot for the process; FALSE - Not draw a plot for the process
interval	searching range of charting constants for the exact method
case	known or unknown case. When case = 'U', the parameters are estimated
phi.vec	vector of autoregressive coefficient(s). When case = 'K', the vector needs to be provided with the length same as the first value in the order. If autoregressive coefficients does not present, phi needs to be NULL
theta.vec	vector of moving-average coefficient(s). When case = 'K', the vector needs to be provided with the length same as the third value in the order. If moving-average coefficients does not present, theta needs to be NULL
mu0	value of the IC process mean. When case = 'K', the value needs to be provided.
sigma0	value of the IC process standard deviation. When case = 'K', the value needs to be provided.
method	estimation method for the control chart. When method = 'MLE+MOM' is max- imum likehood estimations plus method of moments. Other options are 'MLE' which is pure MLE and 'CSS' which is pure CSS.
nsim.coefs	number of simulation for coeficients.
nsim.process	number of simulation for ARMA processes
burn.in	number of burn-ins. When $burn.in = 0$, the simulated process is assumed to be in the initial stage. When $burn.in$ is large enough, the simulated process is assumed to be in the stable stage.
sim.type	type of simulation. When sim.type = 'Matrix', the simulation is generated using matrix computation. When sim.type = 'Recursive', the simulation is based on a recursion.
standardize	Output standardized data instead of raw data
verbose	print diagnostic information about fap0 and the charting constant during the simulations for the exact method

Value

CL Object type double - central line gamma Object type double - process variance estimate cc Object type double - charting constant order Object type integer - order for ARMA model phi.vec Object type integer - values of autoregressors theta.vec Object type integer - values of moving averages LCL Object type double - lower charting limit

UCL Object type double - upper charting limit

CS Object type double - charting statistic

References

Yao, Y., Chakraborti, S., Yang, X., Parton, J., Lewis Jr, D., and Hudnall, M. (2023). Phase I control chart for individual autocorrelated data: application to prescription opioid monitoring. Journal of Quality Technology, 55(3), 302-317.

Examples

```
# load the data in the package as an example
data(preston_data)
# set number of simulations
nsim.process <- 10
nsim.coefs <- 10
# An example using the default setting whose fap0 = 0.1
PH1ARMA(preston_data, nsim.process = nsim.process, nsim.coefs = nsim.coefs)
# When users get an error message about the size of matrix,
# the function needs to use the alternative simulation type as follows
PH1ARMA(preston_data, fap0 = 0.05,
nsim.process = nsim.process, nsim.coefs = nsim.coefs, sim.type = 'Recursive')
```

PH1XBAR

Phase I X-bar control chart with a corrected charting constant

Description

Build a Phase I Shewhart control chart for the variance components model if the data are subgrouped or for the basic Shewhart model if the data are individual. The charting constant is correted by this approach.

Usage

```
PH1XBAR(
    X,
    cc = NULL,
    fap0 = 0.05,
    var.est = c("S", "MR"),
    ub.option = TRUE,
    method = c("exact", "BA"),
    plot.option = TRUE,
    interval = c(1, 5),
```

```
nsim = 10000,
verbose = FALSE
)
```

Arguments

Х	input and it must be a matrix
сс	nominal Phase I charting constant. If this is given, the function will not recompute the charting constant.
fap0	nominal false Alarm Probabilty in Phase 1
var.est	$^{\prime}\text{S}^{\prime}$ - use mean-square-based estimator, $^{\prime}\text{MR}^{\prime}$ - use moving-range-based estimator
ub.option	TRUE - the standard deviation estimator corrected by a unbiasing constant. For S, it is c4 and for MR, it is d2. FALSE - no unbiasing constant
method	'exact' - calculate results using the exact method, 'BA' - calculate results using the Bonfferoni approximation
plot.option	- draw a plot for the process; FALSE - Not draw a plot for the process
interval	searching range of charting constants for the exact method
nsim	number of simulation for the exact method
verbose	print diagnostic information about fap0 and the charting constant during the simulations for the exact method

Value

CL Object type double - central line

var.est Object type double - variance estimate

ub.cons Object type double - unbiasing constant

cc Object type double - charting constant

m Object type integer - number of observations

nu Object type integer - degrees of freedom

lambda Object type integer - chi-squared unbiasing constant

LCL Object type double - lower charting limit

UCL Object type double - upper charting limit

CS Object type double - charting statistic

References

Champ, C.W., and Jones, L.A. (2004) Designing Phase I X-bar charts with small sample sizes. Quality and Reliability Engineering International. 20(5), 497-510

Yao, Y., Hilton, C.W., and Chakraborti, S. (2017) Designing Phase I Shewhart X-bar charts: Extended tables and software. Quality and Reliability Engineering International. 33(8), 2667-2672.

Yao, Y., and Chakraborti, S. (2021). Phase I monitoring of individual normal data: Design and implementation. Quality Engineering, 33(3), 443-456.

Yao, Y., and Chakraborti, S. (2021). Phase I process monitoring: The case of the balanced one-way random effects model. Quality and Reliability Engineering International, 37(3), 1244-1265.

preston_data

Examples

set.seed(12345)

load the data in the package as an example data(grinder_data)

An example using a false alarm probability of 0.05, and 10 simulations
PH1XBAR(grinder_data, fap0 = 0.05, nsim=10, verbose=TRUE)

preston_data Prescription fentanyl consumption in Preston county, WV

Description

A dataset containing prescription fentanyl consumption in Preston county, WV, measured using MME percapita. This is a subset from Rich et al. <doi: 10.21105/joss.02450>

Usage

preston_data

Format

A vector with 60 elements

References

Rich, S., Tran, A. B., Williams, A., Holt, J., Sauer, J., & Oshan, T. M. (2020). arcos and arcospy: R and Python packages for accessing the DEA ARCOS database from 2006-2014. Journal of Open Source Software, 5(53), 2450.

snowfall_data Seasonal snowfall in inches in Minneapolis/St. Paul, MN

Description

A dataset containing snowfalls measured in inches in Minneapolis/St. Paul, MN.

Usage

snowfall_data

snowfall_data

Format

A data frame with 82 rows and 4 variables:

Year year of the snowfalls

jan snowfalls in January

feb snowfalls in February

mar snowfalls in March

References

Mukherjee, P. S. (2016). On phase II monitoring of the probability distributions of univariate continuous processes. Statistical Papers, 57(2), 539-562.

12

Index

* datasets bore_diameter_data, 3 grinder_data, 6 preston_data, 11 snowfall_data, 11 * package PH1XBAR-package, 2 _PACKAGE (PH1XBAR-package), 2

bore_diameter_data, 3

getCC(getCC.XBAR), 5
getCC.ARMA, 4
getCC.XBAR, 5
grinder_data, 6

PH1ARMA,7 PH1XBAR,9 PH1XBAR-package,2 preston_data,11

snowfall_data, 11